


# HOW DOI RUNLINS?

**CDS Student Seminars** 





## TODAY'S AGENDA

1 introduction

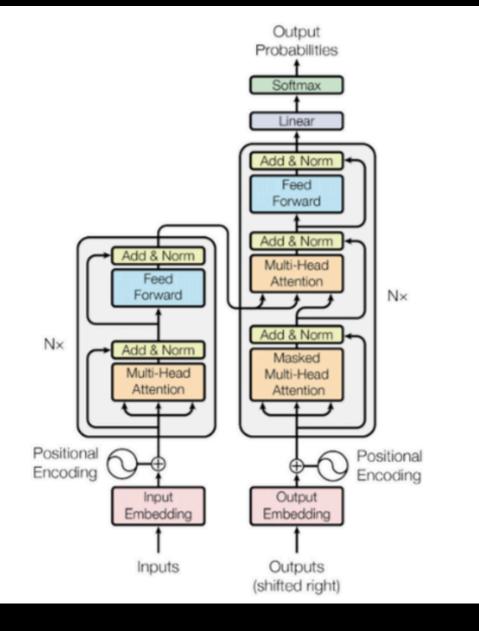


## INTRODUCTION

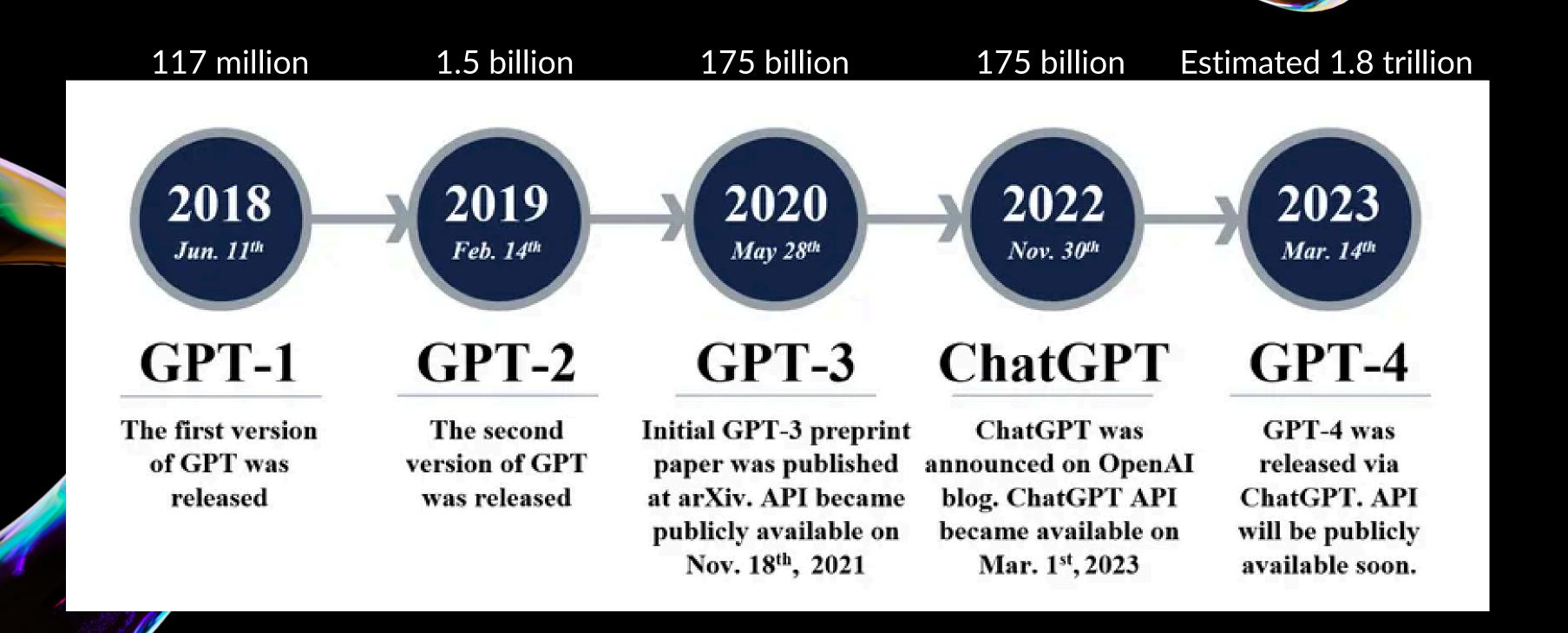
With the rise of large language models (LLMs), researchers across disciplines are exploring how to use artificial intelligience in scientific discovery.

In social science, researchers are interested in using LLMs as reasoning/modeling tools and even as synthetic study participants.

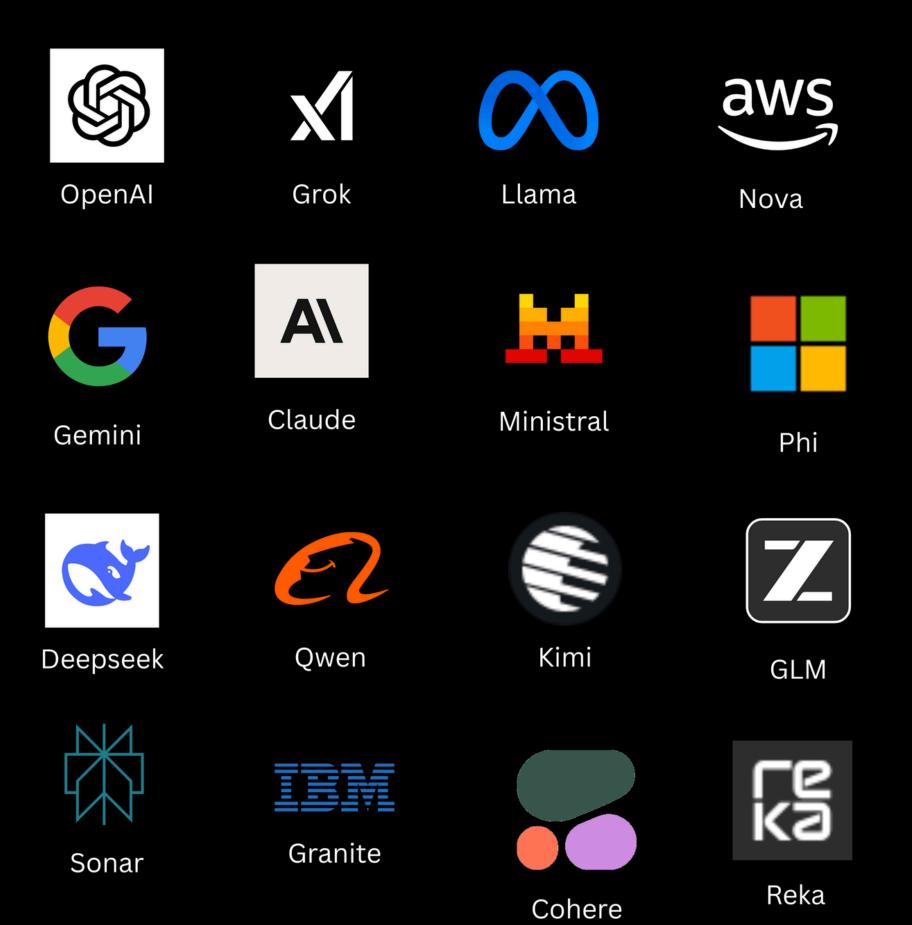
This workshop will show you how to actually use these models in practice.




## The origins of LLMS


- Rule-Based Era (1950s–1980s): Handcrafted linguistic rules and symbolic systems like ELIZA and SHRDLU.
- Statistical NLP (1990s): Shift to data-driven methods using n-grams and Hidden Markov Models.
- Word Embeddings (Early 2010s): Word2Vec and GloVe introduced dense semantic representations.
- Neural Sequence Models (2014–2017): RNNs, LSTMs, and Seq2Seq with attention became standard for translation and generation.

## Transformer


**Attention Is All You Need** 



"Attention Is All You Need" (Vaswani et al., 2017) kickedoff the LLM revolution. In 2017, Google introduced the Transformers architecture, which made a breakthrough in how fast and how big we can train language models. It solved a key problem that RNNs struggled with: **long-range**dependencies and parallelization. This led the way to BERT, GPT, and beyond.



https://medium.com/@seekmeai/the-evolution-of-openais-chatgpt-from-gpt-1-to-gpt-4-and-beyond-cdd15917961a



#### 2025 International Mathematical Olympiad



1/N I'm excited to share that our latest @OpenAl experimental reasoning LLM has achieved a longstanding grand challenge in Al: gold medal-level performance on the world's most prestigious math competition—the International Math Olympiad (IMO).



| Country                       | Team<br>size |   | P1 P | P2 | 2 P3 | P4 | <b>P5</b> | P6 | Total | Rank |    |
|-------------------------------|--------------|---|------|----|------|----|-----------|----|-------|------|----|
|                               | All          | M | F    |    |      |    |           |    |       |      |    |
| People's Republic of<br>China | 6            | 6 | 0    | 42 | 42   | 42 | 42        | 42 | 21    | 231  | 1  |
| United States of<br>America   | 6            | 5 | 1    | 42 | 42   | 40 | 41        | 42 | 9     | 216  | 2  |
| Republic of Korea             | 6            | 5 | 1    | 42 | 42   | 42 | 42        | 31 | 4     | 203  | 3  |
| Japan                         | 6            | 6 | 0    | 41 | 36   | 31 | 42        | 36 | 10    | 196  | 4  |
| Poland                        | 6            | 5 | 1    | 42 | 42   | 28 | 41        | 42 | 1     | 196  | 4  |
| Israel                        | 6            | 6 | 0    | 42 | 42   | 34 | 42        | 32 | 2     | 194  | 6  |
| India                         | 6            | 6 | 0    | 42 | 42   | 28 | 42        | 36 | 3     | 193  | 7  |
| Singapore                     | 6            | 6 | 0    | 42 | 42   | 26 | 42        | 38 | 1     | 191  | 8  |
| Vietnam                       | 6            | 5 | 1    | 40 | 42   | 27 | 42        | 34 | 3     | 188  | 9  |
| Türkiye                       | 6            | 6 | 0    | 42 | 30   | 28 | 42        | 42 | 2     | 186  | 10 |

DeepMind: 35/42, OpenAI: 35/42

#### 2025 International Mathematical Olympiad

| Model            | Acc    | Cost     | 1   | 2  | 3   | 4   | 5   | 6  |
|------------------|--------|----------|-----|----|-----|-----|-----|----|
| gemini-2.5-pro   | 31.55% | \$431.97 | 14% | 0% | 71% | 46% | 57% | 0% |
| o3 (high)        | 16.67% | \$223.33 | 0%  | 0% | 7%  | 36% | 57% | 0% |
| o4-mini (high)   | 14.29% | \$103.34 | 16% | 0% | 5%  | 46% | 18% | 0% |
| Grok 4           | 11.90% | \$527.85 | 13% | 4% | 18% | 13% | 25% | 0% |
| DeepSeek-R1-0528 | 6.85%  | \$59.50  | 4%  | 0% | 5%  | 0%  | 32% | 0% |

However, current models do not reach the same level.

#### The trends suggests a HUGE potential in innovation.

#### How can intelligient LLMs advance scientific research?

Published as a conference paper at ICLR 2025

#### LLM-SR: SCIENTIFIC EQUATION DISCOVERY VIA PROGRAMMING WITH LARGE LANGUAGE MODELS

Parshin Shojaee1\* Kazem Meidani2\* Shashank Gupta3 Amir Barati Farimani<sup>2</sup> Chandan K. Reddy<sup>1</sup>

<sup>1</sup>Virginia Tech <sup>2</sup>Carnegie Mellon University <sup>3</sup>Allen Institute for AI

#### ABSTRACT

Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely large combinatorial hypothesis spaces. Current methods of equation discovery, commonly known as symbolic regression techniques, largely focus on extracting equations from data alone, often neglecting the domain-specific prior knowledge that scientists typically depend on. They also employ limited representations such as expression trees, constraining the search space and expressiveness of equations. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeleton hypotheses, drawing from its domain knowledge, which are then optimized against data to estimate parameters. We evaluate LLM-SR on four benchmark problems across diverse scientific domains (e.g., physics, biology), which we carefully designed to simulate the discovery process and prevent LLM recitation. Our results demonstrate that LLM-SR discovers physically accurate equations that significantly outperform state-of-the-art symbolic regression baselines, particularly in out-of-domain test settings. We also show that LLM-SR's incorporation of scientific priors enables more efficient equation space exploration than the baselines<sup>1</sup>.

#### 1 Introduction

The emergence of Large Language Models (LLMs) has marked a significant milestone in artificial intelligence, showcasing remarkable capabilities across various domains (Achiam et al., 2023). As LLMs continue to evolve, researchers are exploring innovative ways to harness their potential for solving complex problems such as scientific discovery (Wang et al., 2023a; AI4Science & Quantum, 2023). Their ability to process and comprehend vast amounts of scientific literature, extract relevant information, and generate coherent hypotheses has recently opened up new avenues for accelerating scientific progress (Zheng et al., 2023b; Ji et al., 2024). Additionally, by leveraging their ability to

#### **INTERFACE**

royalsocietypublishing.org/journal/rsif



#### Research





Cite this article: Abdel-Rehim A et al. 2025 Scientific hypothesis generation by large language models: laboratory validation in breast cancer treatment. J. R. Soc. Interface 22:

https://doi.org/10.1098/rsif.2024.0674

Received: 27 September 2024 Accepted: 28 April 2025

#### Subject Category:

Life Sciences—Mathematics interface

#### Subject Areas:

biotechnology

#### Scientific hypothesis generation by large language models: laboratory validation in breast cancer treatment

Abbi Abdel-Rehim<sup>1</sup>, Hector Zenil<sup>1,2,3,4,5</sup>, Oghenejokpeme Orhobor<sup>1</sup>, Marie Fisher<sup>6</sup>, Ross J. Collins<sup>6</sup>, Elizabeth Bourne<sup>6</sup>, Gareth W. Fearnley<sup>6</sup>, Emma Tate<sup>6</sup>, Holly X. Smith<sup>6</sup>, Larisa N. Soldatova<sup>7</sup> and Ross King<sup>1,8</sup>

<sup>1</sup>Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK <sup>2</sup>Algorithmic Dynamics Lab, Research Departments of Biomedical Computing and Digital Twins, School of Biomedical Engineering and Imaging Sciences, King's Institute for AI, King's College London, London, England, UK <sup>3</sup>Oxford Immune Algorithmics, Oxford University Innovation and London Institute for Healthcare Engineering, London, England, UK

<sup>4</sup>Cancer Interest Group, The Francis Crick Institute, London, England, UK <sup>5</sup>Defence and National Security, The Alan Turing Institute, British Library, London, England, UK <sup>6</sup>Arctoris Ltd, Oxford, UK

<sup>7</sup>Computer Science, Goldsmiths University of London, London, UK <sup>8</sup>Department of Computer Science and Engineering, Chalmers University, Gothenburg, Sweden

(D) HZ, 0000-0003-0634-4384; RK, 0000-0001-7208-4387

Large language models (LLMs) have transformed artificial intelligence (AI) and achieved breakthrough performance on a wide range of tasks. In science, the most interesting application of LLMs is for hypothesis formation. A feature of LLMs, which results from their probabilistic structure, is that the output text is not necessarily a valid inference from the training text. These are termed 'hallucinations', and are harmful in many applications. In science, some hallucinations may be useful: novel hypotheses whose validity may be tested by laboratory experiments. Here, we experimentally test the application of LLMs as a source of scientific hypotheses using the domain of breast cancer treatment. We applied the LLM GPT4 to hypothesize novel synergistic pairs of US Food and Drug



**Policy Brief HAI Policy & Society** May 2025

#### Simulating Human Behavior with Al Agents

Joon Sung Park, Carolyn Q. Zou, Aaron Shaw, Benjamin Mako Hill, Carrie J. Cai, Meredith Ringel Morris, Robb Willer, Percy Liang, Michael S. Bernstein

Al agents have been gaining widespread attention among the general public as Al systems that can pursue complex goals and directly take actions in both virtual and real-world environments. Today, people can use Al agents to make payments, reserve flights, and place grocery orders for them, and there is great excitement about the potential for Al agents to manage even more sophisticated tasks.

However, a different type of Al agent—a simulation of human behaviors and attitudes—is also on the rise. These simulation AI agents aim to be useful at asking "what if" questions about how people might respond to a range of social, political, or informational contexts. If these agents achieve high accuracy, they could enable researchers to test a broad set of interventions and theories, such as how people would react to new public health messages, product launches, or major economic or political shocks, Across economics, sociology, organizations, and political science, new ways of simulating individual behavior—and the behavior of groups of individuals could help expand our understanding of social interactions, institutions, and networks. While work on these kinds of agents is progressing, current architectures must cover some distance before their use is reliable.

#### **Key Takeaways**

behaviors could enable researcher to test interventions and theories and gain real-world insights.

We built an Al agent architecture that can simulate real people in ways far more complex than traditional approaches. Using this architecture, we created generative agents that simulate LLM paired with an in-depth interview transcript of the

evaluated the agents' responses against the corresponding person's responses to major social science surveys and experiments. We found that the agents replicated real participants' responses 85% as accurately as the individuals two weeks later on the General Social Survey.

hold sensitive data and can mimic individual behavior, policymakers and researchers must work together to ensure that appropriate monitoring and consent mechanisms are used to help mitigate risks while also harnessin potential benefits

## TODAY'S AGENDA

()

1 introduction

2 let's build: chat interface and APIs



## CHAT INTERFACE

#### Simpliest proof-of-concept?

Just use chat interfaces!

Examples: Gemini Pro, ChatGPT (GPT-5), Claude,

Windsurf, Cursor, GitHub Copilot

#### Pros:

- simple and easy to use
- Strong context management and stability
- Generous free tiers (e.g., free Gemini Pro and GitHub Copilot for students)

#### Cons:

• Limited workflow customization and automation capabilities



## LLM APIS

\*\*Tip: Gemini does have a good free tier. Don't add your billing info or you will get charged once you are past the free limit.

#### Simpliest proof-of-concept?

Just use chat interfaces!

Examples: Gemini Pro, ChatGPT (GPT-5), Claude,

Windsurf, Cursor, GitHub Copilot

#### What are good fits for API tool calling?

- Multi-agent environments
- Multi-turn reasoning pipelines
- Custom evaluation of output quality
- Decision-making sequences

#### Pros:

- High control over model behavior and reasoning
- Enables complex, tailored applications and research workflows

#### Cons:

 Requires significant development effort and upfront coding costs



### LLM APIS

\*\*Tip: Gemini does have a good free tier. Don't add your billing info or you will get charged once you are past the free limit.

#### How do you call LLM APIs?

#### Platforms with multiple models:

- **OpenRouter** A platform that lets users access multiple Al models through a single interface. <a href="https://openrouter.ai/">https://openrouter.ai/</a>
- **Groq** A hardware and inference platform designed to run Al models extremely fast. <a href="https://groq.com/">https://groq.com/</a>

#### Direct Model Call:

- OpenAl Access to GPT models such as GPT-4 and GPT-4o. <a href="https://platform.openai.com/docs/api-reference">https://platform.openai.com/docs/api-reference</a>
- **Anthropic** Claude models, including Claude 3 Opus, Sonnet, and Haiku. <a href="https://claude.com/platform/api">https://claude.com/platform/api</a>
- Google Gemini Gemini models available via Google Al Studio or Vertex
   Al. <a href="https://aistudio.google.com/">https://aistudio.google.com/</a>
- Cohere Command and Embed models for generation and embeddings.
   <a href="https://docs.cohere.com/">https://docs.cohere.com/</a>
- Mistral AI Mistral and Mixtral models offered through their native API.
   <a href="https://mistral.ai/">https://mistral.ai/</a>

## MODEL PRICING

| Model                         | Input \$/1M tokens | Output \$/1M tokens |  |  |  |
|-------------------------------|--------------------|---------------------|--|--|--|
| GPT-5                         | \$1.25             | \$10                |  |  |  |
| Gemini 2.5 Flash              | \$0.30             | \$2.50              |  |  |  |
| Gemini 2.5 Pro                | \$1.25             | \$10                |  |  |  |
| GLM 4.5 (via Z.ai/OpenRouter) | \$0.60             | \$2.20              |  |  |  |
| Claude Sonnet 4               | \$3                | \$15                |  |  |  |
| Claude Opus 4.1               | \$15               | \$75                |  |  |  |







## THE ART OF PROMPTING



#### Have AI edit your prompt

Use AI to refine your prompts. Draft what you want to say in one chat, then have the AI structure it into a clear prompt for another model.



#### Be clear on data structure

Pasting a full CSV without context can confuse an LLM. As with a Kaggle dataset or working with a colleague, first explain the dataset and each column. You can also give explicit instructions, such as a function, for how the model should process the data.



#### **Seeding with starter model**

To avoid wasting credits on weak models, start with a seed model for the LLM to refine. Some argue this risks originality, but like any scientific work, using prior literature is a valid foundation for discovery.



#### Be clear about output format

Be explicit if you need a Python function or a specific function name for the next step. State it clearly: "Write a Python function named X." Expect to adjust the prompt continuously to correct errors or omissions.

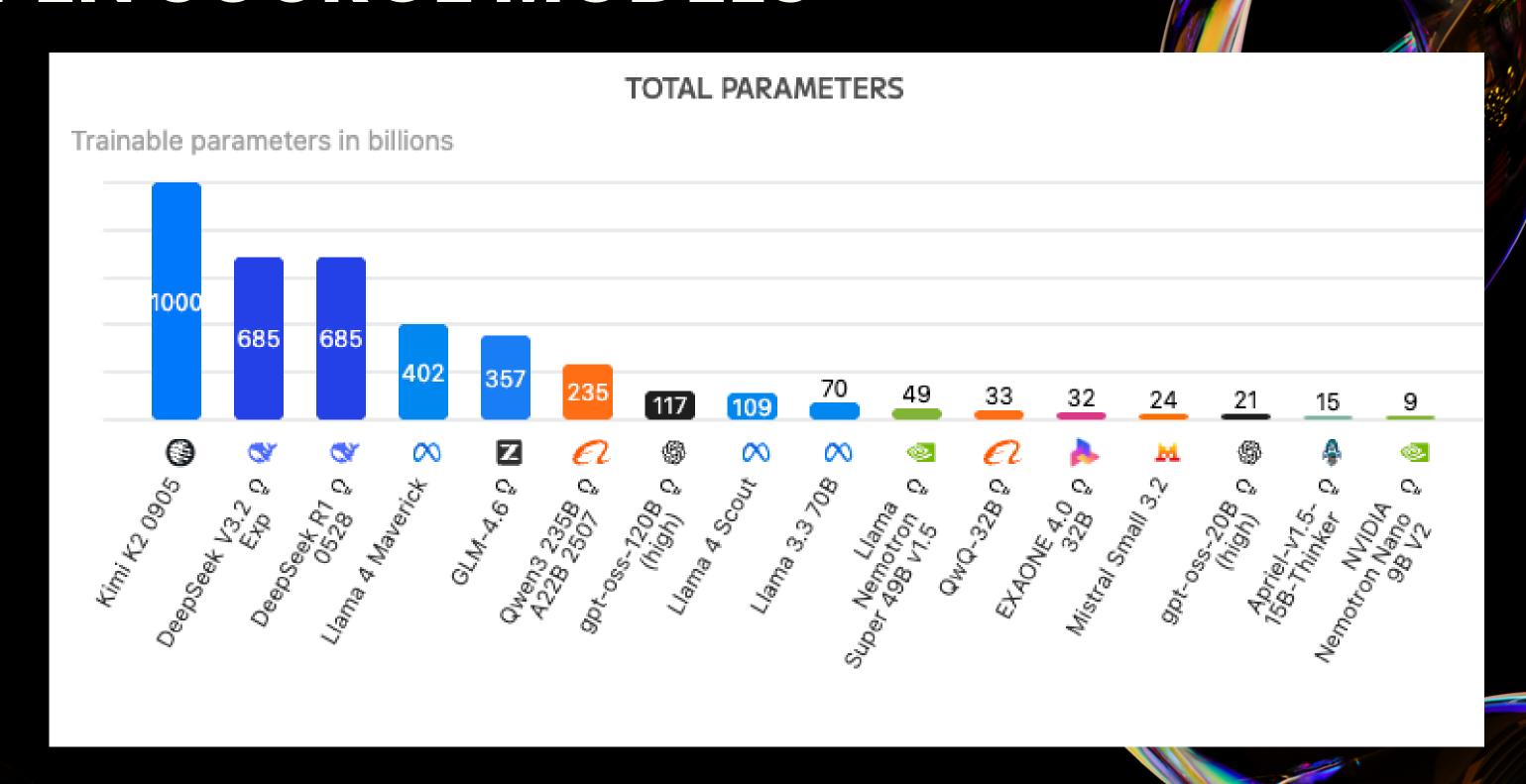
## TODAY'S AGENDA



- 1 introduction
- 2 let's build: chat interface and APIs
- 3 demo
- 4 the art of prompting
- 5 open source models

#### What are good fits for using open source model?

- Fine-tune for specific tasks
- Need data privacy
- Cheap model
- Experimentation and develop new capabilities


#### Pros:

- High control and customization
- Community and transparency
- Innovation

#### Cons:

- Requires setup and Infra management
- Will not be as smart as proprietary models
- Often needs fine-tuning to perform well









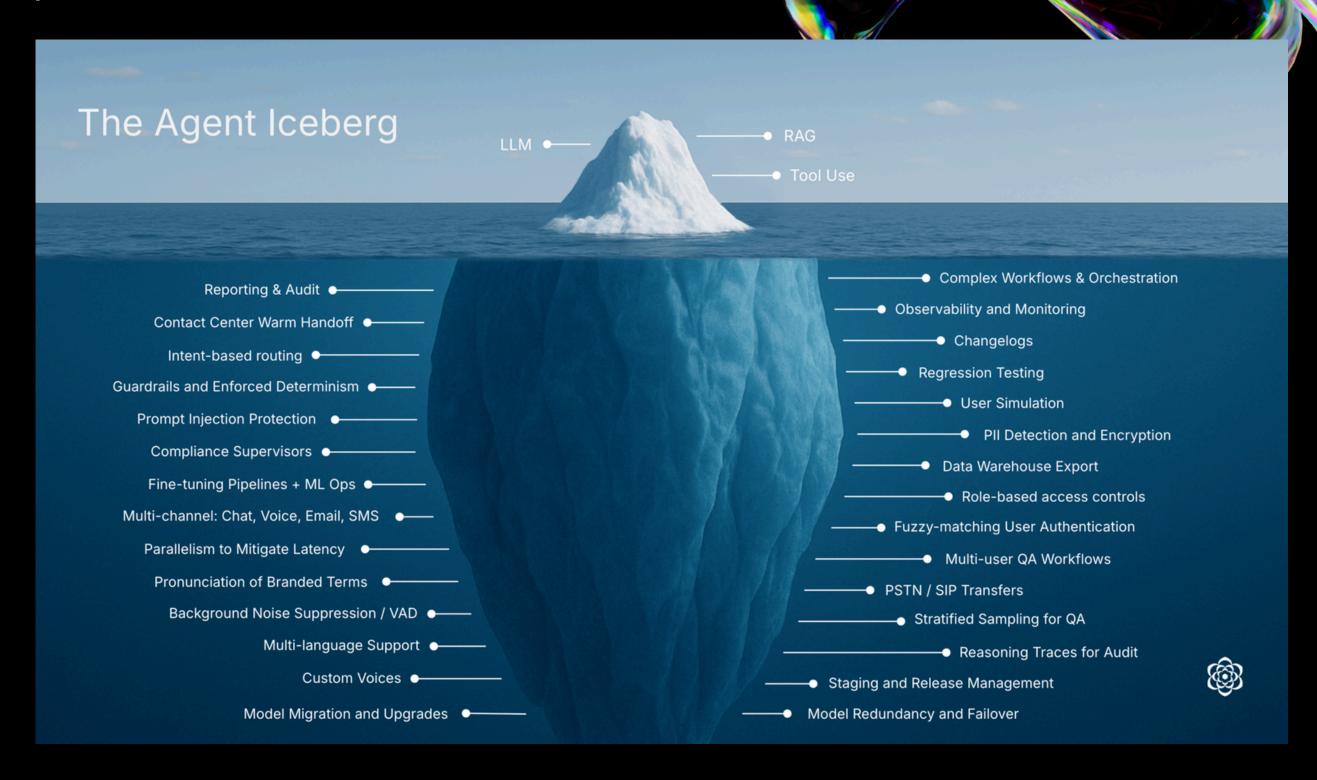
Unsloth: Provides notebooks that simplify inference and fine-tuning pipelines (YC S24).

https://docs.unsloth.ai/get-started/unsloth-notebooks

vLLM: LLM inference engine optimized for GPU scaling, streaming, and batch processing (requires GPU).

Ollama: Local LLM platform for easy setup and experimentation with built-in model management.

Article that explains the difference between vLLM and Ollama: <a href="https://robert-mcdermott.medium.com/performance-vs-practicality-a-comparison-of-vllm-and-ollama-104acad250fd">https://robert-mcdermott.medium.com/performance-vs-practicality-a-comparison-of-vllm-and-ollama-104acad250fd</a>


## TODAY'S AGENDA



- **1** introduction
- 2 let's build: chat interface and APIs
- 3 demo
- 4 the art of prompting
- 5 open source models

- 6 open discussion
- 7 LLM and beyond....

#### LLM and beyond....



https://sierra.ai/blog/the-challenge-with-rolling-your-own-agent

#### Resources and continued learning

Weekly news on latest LLM trends: <a href="https://velab.dev/">https://velab.dev/</a>

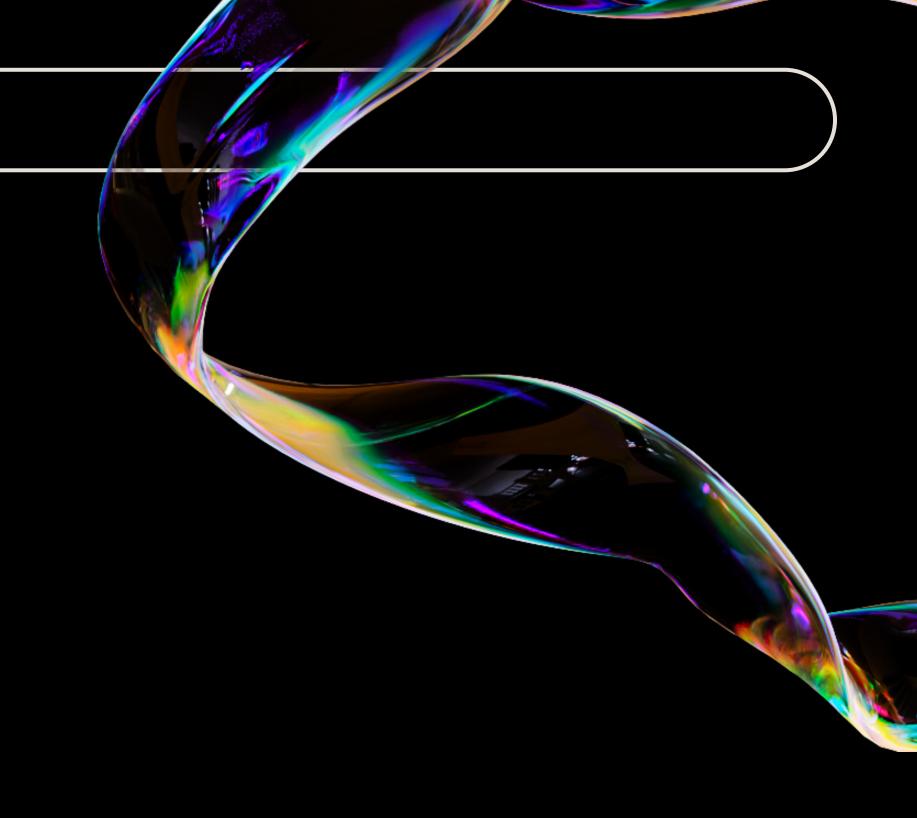
Deep comparitive analysis of current LLM models: <a href="https://artificialanalysis.ai/">https://artificialanalysis.ai/</a>

Reddit: <a href="https://www.reddit.com/r/LLMDevs/">https://www.reddit.com/r/LLMDevs/</a>

Discord channels

Cool papers:

OG agent framework paper: <a href="https://arxiv.org/abs/2303.11366">https://arxiv.org/abs/2303.11366</a>


LLM powered foundational model of human cognition: <a href="https://arxiv.org/abs/2410.20268">https://arxiv.org/abs/2410.20268</a>\

Cognitive model discovery via LLMs: <a href="https://arxiv.org/abs/2502.00879">https://arxiv.org/abs/2502.00879</a>



# THANK YOU!

**CDS Student Seminars** 



