Bilateral Trade with Interdependent Values

CDS Seminar Talk

Thodoris Tsilivis

Talk Outline

1. Mechanism Design Fundamentals.

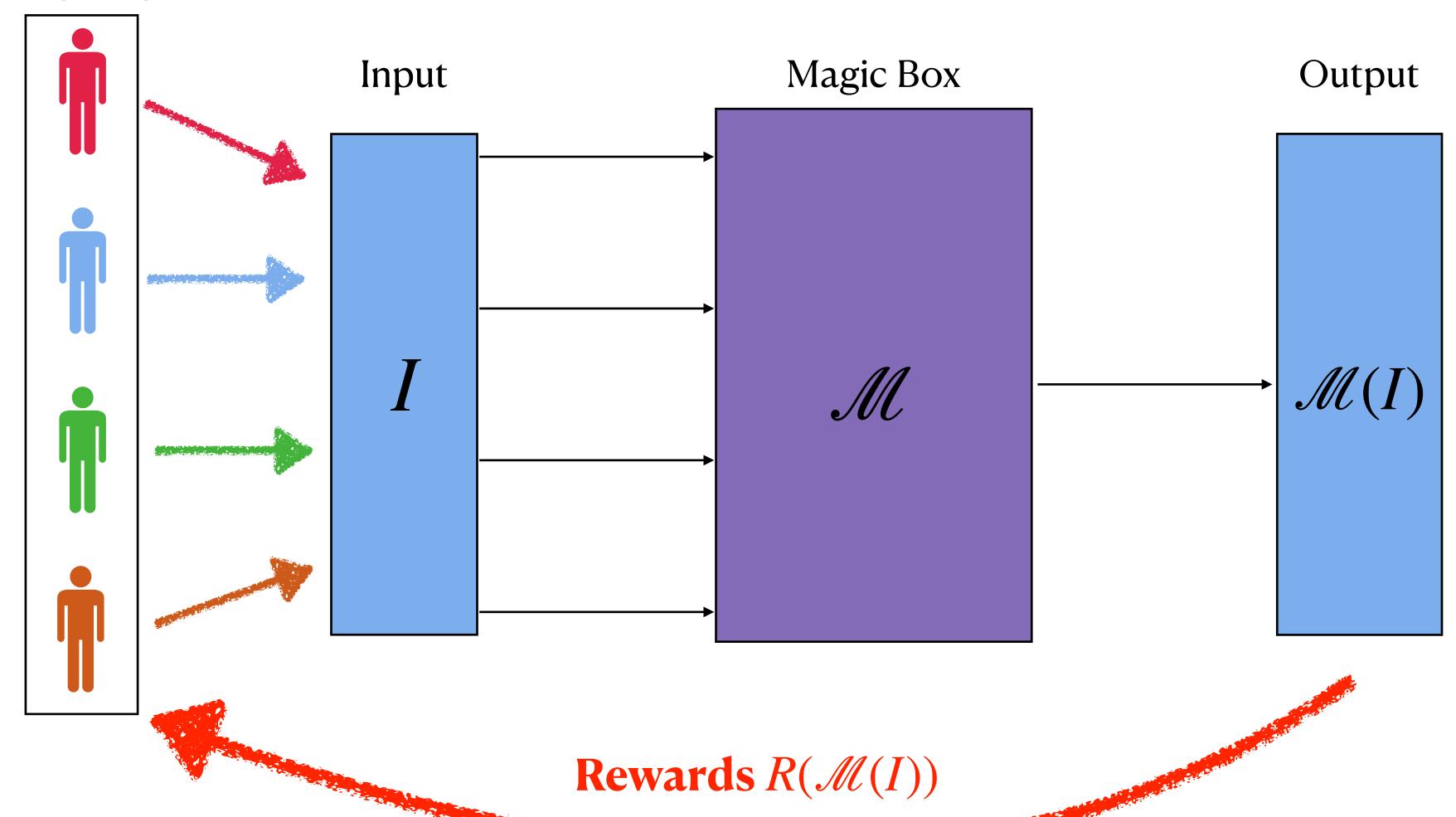
2. Bilateral Trade under this Lens.

3. Value Assumptions.

4. Bilateral Trade with Interdependent Values.

An algorithmic framework

Strategic Agents



Mechanism Design Task

- Same setup as in algorithm design (Input, Output, Objective).
- Additional Constraints:
 - Incentive Compatibility (IC): It is in the <u>best interest</u> of participating agents to report their <u>true</u> information in the mechanism.
 - Individual Rationality (IR): Participating in the mechanism can only be beneficial for an agent.
- How do we (usually) enforce these constraints? Payments.

Mechanism Design Examples

Auctions

Public Projects

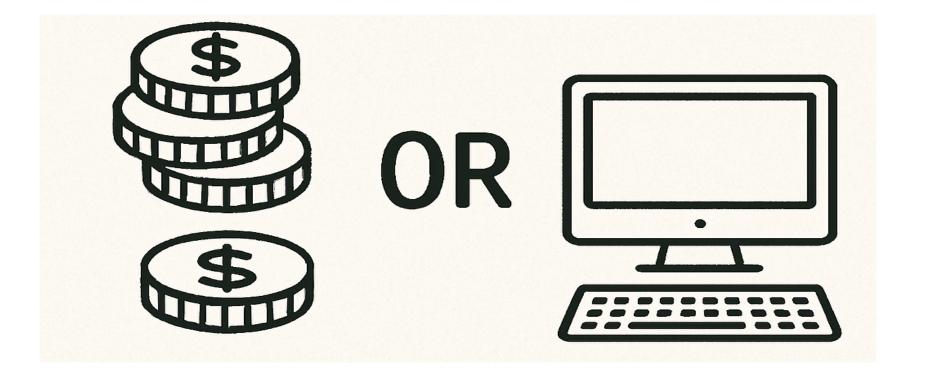
Matching Doctors to Hospitals

Contract Design

Mechanism Design under Economics & Computer Science

- Economists started studying mechanism design in the 1960's (Hurwicz, Maskin, Myerson).
- Lens of study: Existence and characterization of optimal mechanisms.

- Computer Scientists picked up (algorithmic) mechanism design in the 1990's (Nisan, Ronen, Roughgarden, Tardos, Papadimitriou).
- Lens of study: Efficient computation in mechanism design, approximately optimal mechanisms

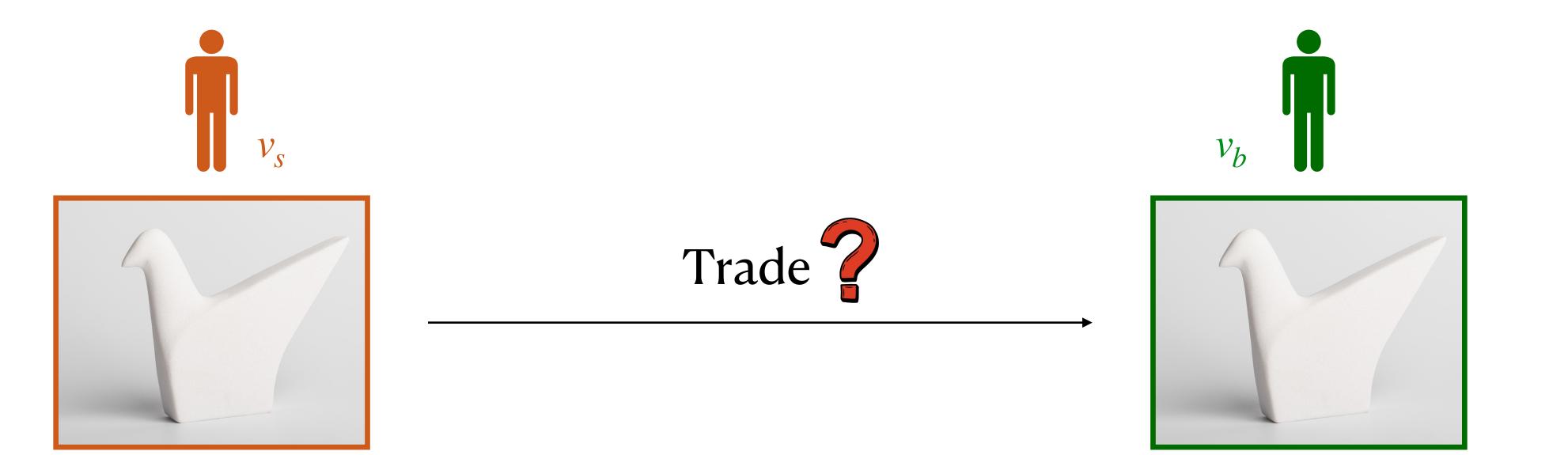


Bilateral trade

Setting: A seller with one item and a potential buyer. The seller values the item v_s and the buyer values it v_b , and these values are **private information**, drawn from **publicly** known distributions.

Designer goal: Decide if the trade should happen and under what payment scheme.

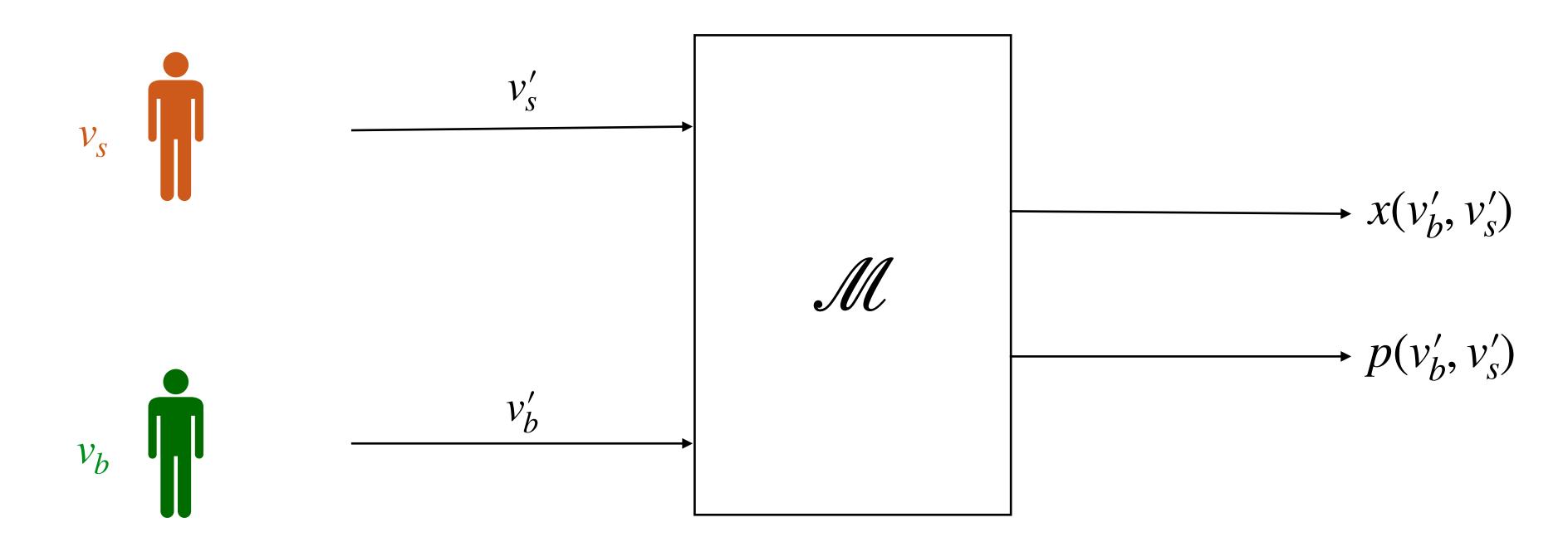
Natural objective: Trade whenever the buyer values the item more than the seller ($v_b > v_s$).



Mechanism Design Task

A (direct) **mechanism** \mathcal{M} consists of two functions $\mathcal{M} = (x, p)$, takes **reported** values v_b' and v_s' as input and outputs:

- 1. The **probability** of trade $x(v_b', v_s')$.
- 2. The **price** that the buyer pays to the seller $p(v_b', v_s')$.



Agents & Constraints

Utilities under mechanism \mathcal{M} with reports (v_b', v_s') :

payment – value · probability of trade

Seller utility: $p(v'_s, v'_b) - v_s \cdot x(v'_s, v'_b)$ Buyer Utility: $v_b \cdot x(v'_s, v'_b) - p(v'_s, v'_b)$ Desired Constraints:

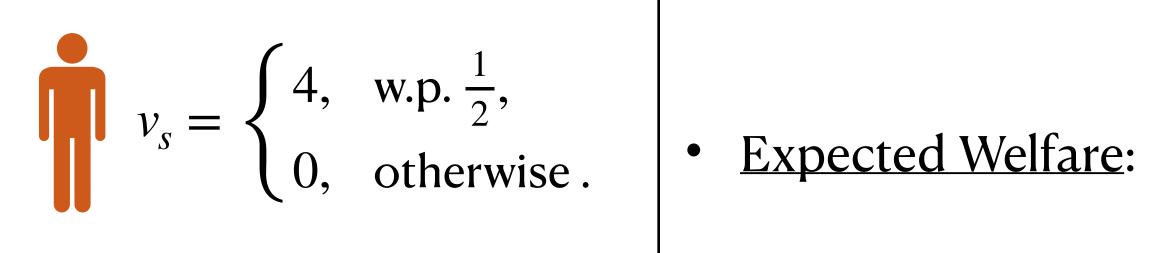
- Individual Rationality (IR) ----> Non-negative utility from participating in the mechanism.
- Incentive Compatibility (IC) --> No incentive to misreport my information to the mechanism.
- Budget Balance (BB) -----> The designer does not subsidize the trade.

Objectives

A mechanism's performance in bilateral trade is commonly measured in:

- 1. Social Welfare: the value (welfare) of the agent that is allocated the item.
 - An optimal mechanism achieves $SW = \mathbb{E}\left[max(v_b, v_s)\right]$.
- 2. Gains from Trade: the welfare increase due to the trade (if it happens).
 - An optimal mechanism achieves $GFT = \mathbb{E} \left[max(v_b v_s, 0) \right]$.

A Simple Example



$$v_b = 2.$$

At Optimality:

$$SW = \mathbb{E}\left[max(v_b, v_s)\right] = 3.$$

Expected GFT:

$$GFT = \mathbb{E}\left[max(v_b - v_s, 0)\right] = 1.$$

Optimal Objectives

Example mechanism:

No trade mechanism: (x, p) = (0, 0).

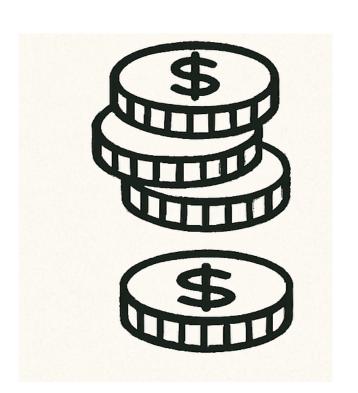
Expected Welfare:

$$\mathbb{E}[Welfare] = 2.$$

Expected GFT:

$$\mathbb{E}[Gains\ from\ trade] = 0.$$

No trade mechanism *M*



Economists: Optimality is unattainable

(Informal) Theorem [Myerson-Satterthwaite 83]: There exists no mechanism that simultaneously guarantees individual rationality, incentive compatibility, budget balance, and maximizes Social Welfare.

Computer Scientists: Approximation Thrives

Independent Values:

· Welfare:

- -Multiple works with posted price mechanisms [Blumrosen and Dobzinski, 2014, 2021, Cai and Wu, 2023, Colini-Baldeschi et al., 2016, Kang et al., 2022, Liu et al., 2023].
- -State of the Art (blue) is a 1.38 approximation, Lower bound (red) is 1.354.

'Gains From Trade:

- Again multiple works with posted price mechanisms [Babaioff et al., 2021, 2020, Blumrosen and Dobzinski, 2014, Brustle et al., 2017, Cai et al., 2021, Deng et al., 2022, Fei, 2022, McAfee, 2008]
- ⁻State of the Art (blue) achieves a 3.15 approximation, Lower bound (red) is 1.358.

Correlated Values - Welfare:

Only one work [Dobzinski and Shaulker, 2024], that proves that a posted price mechanism achieves a **tight 1.582** approximation.

Interdependent Bilateral Trade: Information vs Approximation

Joint work with Shahar Dobzinski¹, Alon Eden², Kira Goldner³, Ariel Shaulker¹

¹ Weizmann Institute of Science, ² Hebrew University of Jerusalem, ³ Boston University

A more realistic example?

An art connoisseur is considering selling their marble sculpture to a civil engineer.

Knows Signal s:
The "artistic" value of the sculpture.

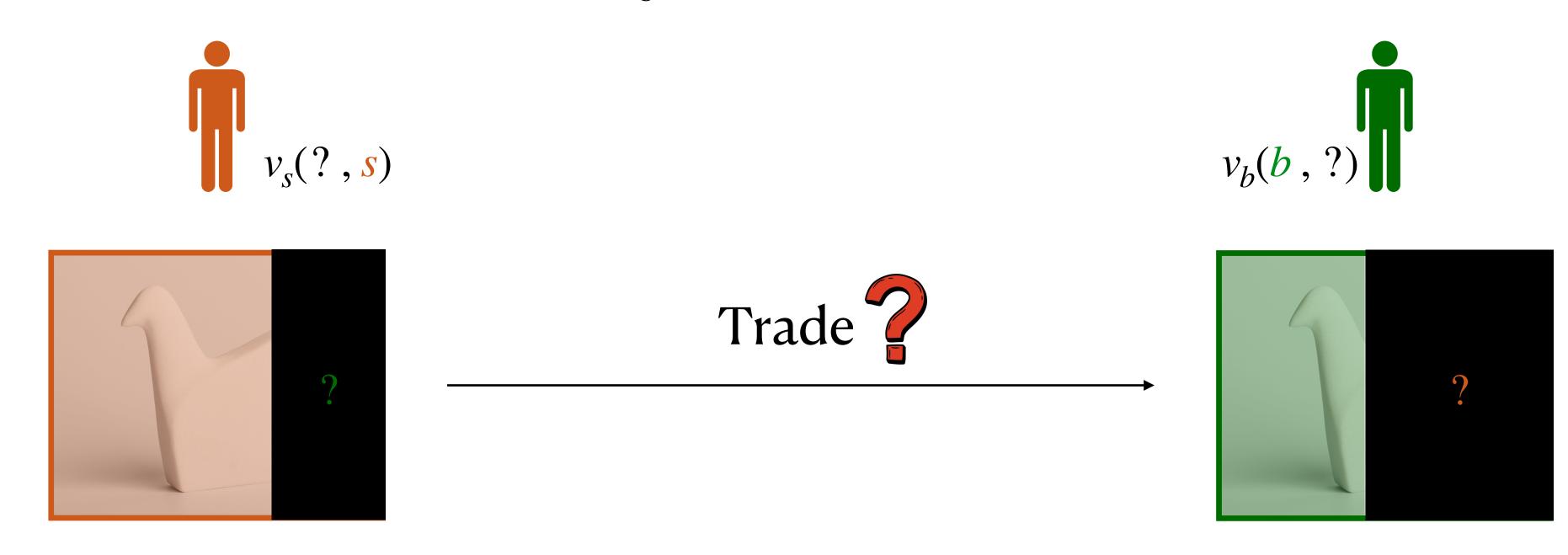
Knows Signal *b*: The "material" value of the sculpture.

What if they both care about the other agent's information?

The Interdependent Values Model

The seller has a **private** signal s and the buyer has a **private** signal b. The signals are drawn from **publicly** known distributions.

Their values for the item are **public functions** of the signals, that is the seller's value is $v_s(b, s)$ and the buyer's value is $v_b(b, s)$.



Why should you care about this model?

- Thodoris said so and he seems like he knows his stuff?
- 1. The model naturally generalizes the independent and correlated values model.
- 2. Milgrom & Weber were awarded the **Nobel Prize** in **Economics** in 2020 for introducing and working in the interdependent values model [1982].
- 3. You might want to **train** Al agents/neural nets/models to participate in bilateral trade (or other mechanisms).

Amount of Information vs Approximation

- Information structures comprise of additively separable valuations, with signals b, s drawn independently from U[0,1]:

$$v_s(b,s) = f_s(b) + g_s(s),$$
 $v_b(b,s) = f_b(b) + g_b(s),$

where, $f(\cdot)$, $g(\cdot)$ are non-negative, increasing functions.

On an information structure, we quantify the **influence** that a player's **private signal has** on their own valuation with parameters α for the seller and β for the buyer.

Amount of Information vs Approximation

Defining (α,β) pictorially: $\alpha = \frac{\left[\begin{array}{c} \\ \\ \end{array} \right]}{\left[\begin{array}{c} \\ \end{array} \right]} \qquad \beta = \frac{\left[\begin{array}{c} \\ \end{array} \right]}{\left[\begin{array}{c} \\ \end{array} \right]}$

- Uninformed seller corresponds to $\alpha = 0$. Fully informed seller corresponds to $\alpha = 1$ (same for buyer).
- Formally, we denote the seller α -informed and the buyer β -informed with:

$$\alpha = \frac{\mathbb{E}_s[v_s(0,s)]}{\mathbb{E}_{s,b}[v_s(b,s)]}, \qquad \beta = \frac{\mathbb{E}_b[v_b(b,0)]}{\mathbb{E}_{b,s}[v_b(b,s)]}.$$

Information Asymmetry - The Market for Lemons [Akerlof' 70]

Consider we want to design bilateral trade mechanisms for a **used car trade**. Assume that cars in the market are **evenly** divided into:

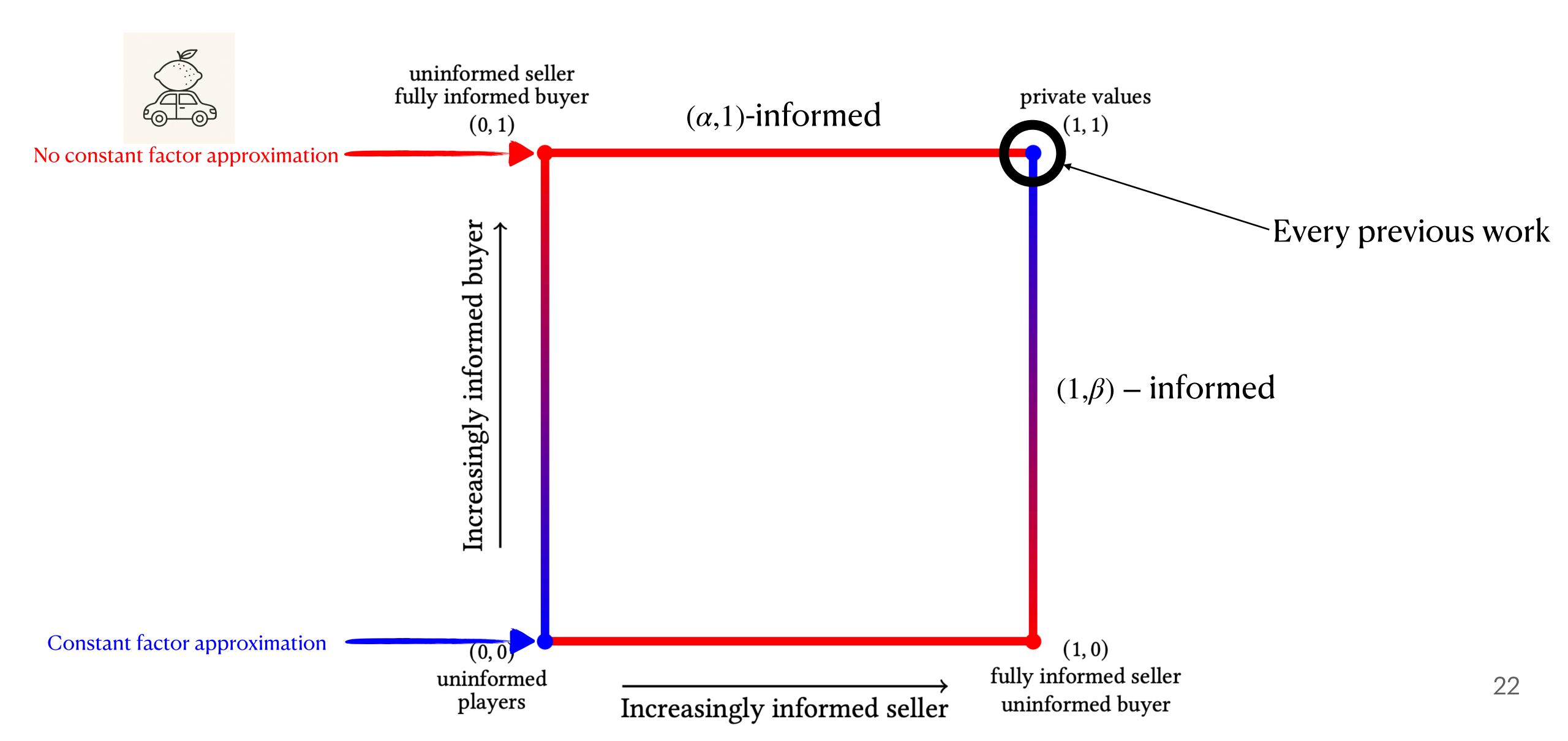
- *Peaches*: Cars in excellent condition valued at \$10000.
- Lemons: Cars in terrible condition valued at \$0.
- The seller and the buyer share the same value function for the cars. However:
 - The seller has complete information of whether their car is a *peach* or a *lemon*.
 - The buyer has no information whatsoever.
- This instance corresponds to a (0,1)-information structure (that is the seller is uninformed and the buyer is fully-informed).

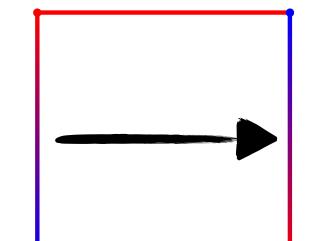
Information Asymmetry - The Market for Lemons [Akerlof' 70]

Consider a simple mechanism that posts a price of \$3000:

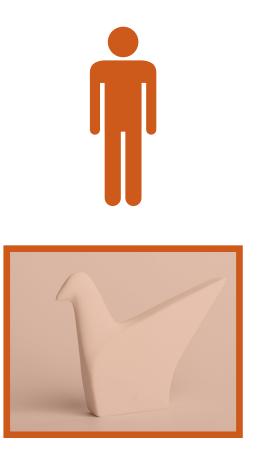
- ·When should the seller accept this price?
 - -Accept the trade if your car is a lemon (worth \$0).
 - -Reject the trade if your car is a *peach* (worth \$10k).
- ·When should the buyer accept this price?
 - -Always reject. The buyer should be conditioning on the seller accepting the trade.
- 'What is the expected welfare of this mechanism? What is the optimal welfare?

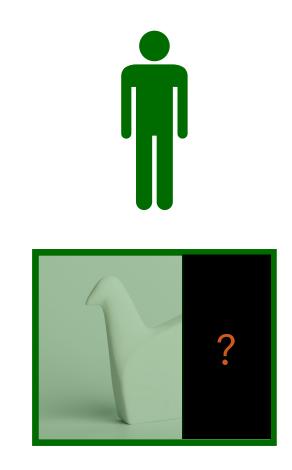
Overview of results for (α,β) - information structures on the square

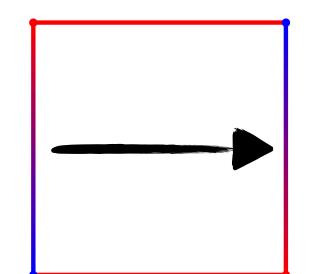




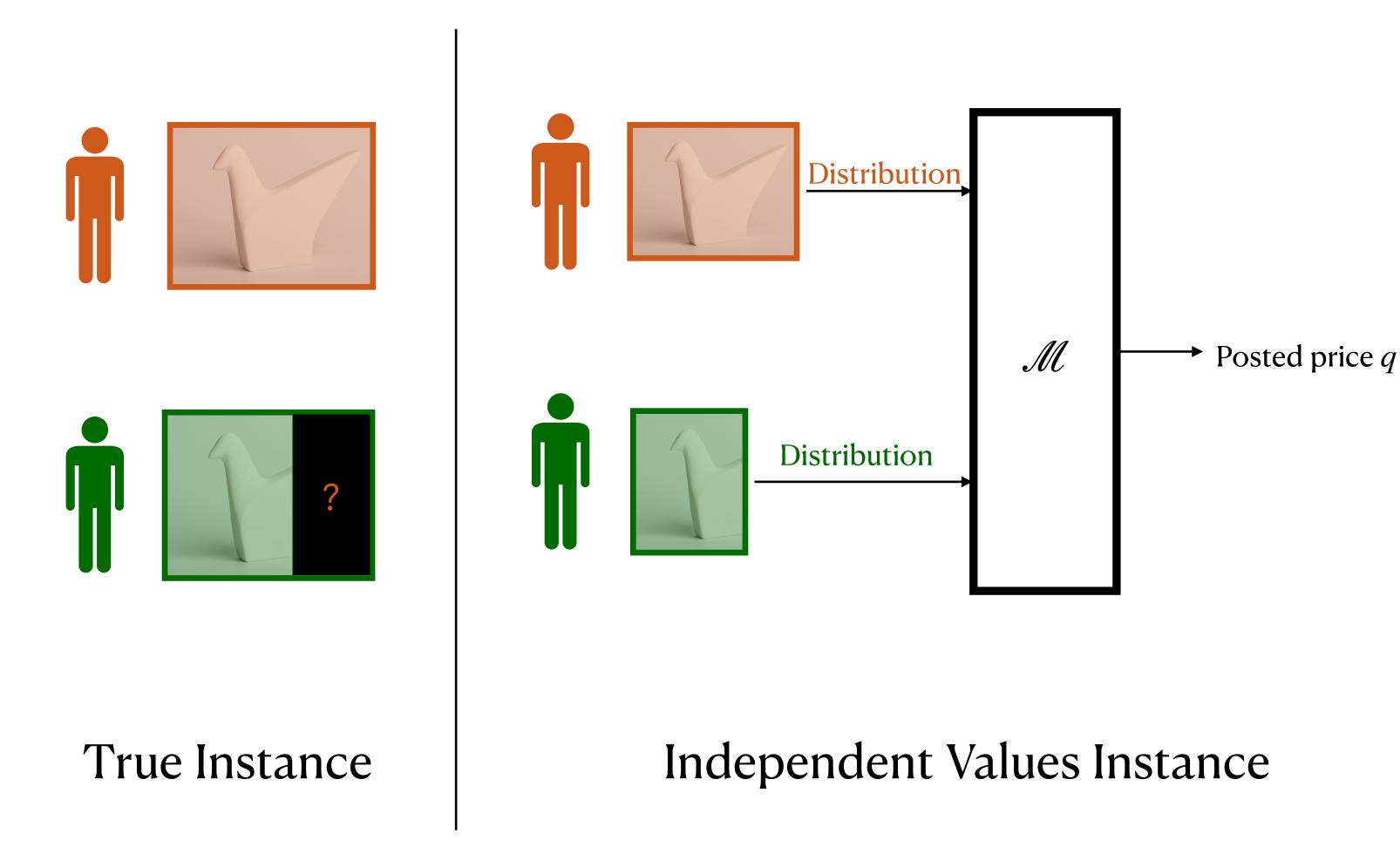
(Informal) Theorem 1: Let \mathcal{M} be a posted price mechanism for the (private) independent values case with an approximation ratio of γ . Consider an information structure with $\beta > 0$ and a fully informed seller ($\alpha = 1$). Then there **exists** a BIC **mechanism** \mathcal{M}' with an **approximation** ratio of $\frac{2\gamma}{\beta}$.

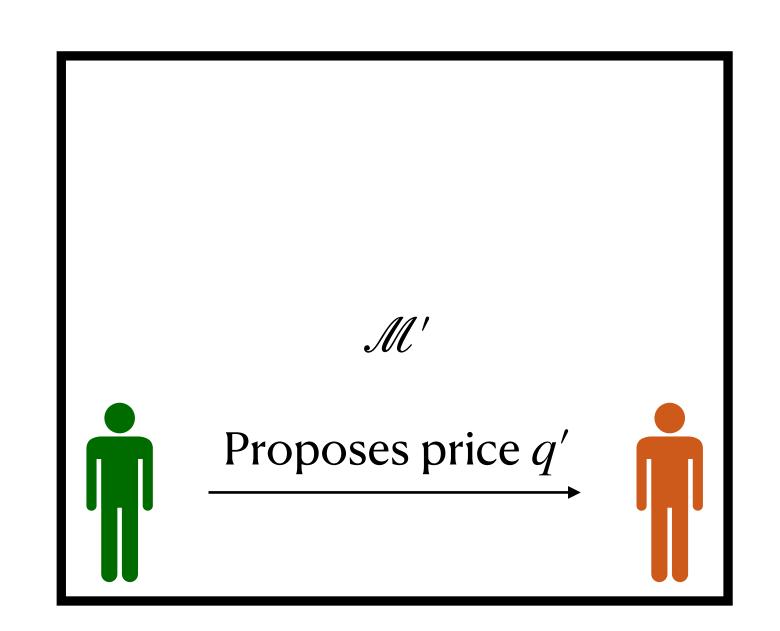




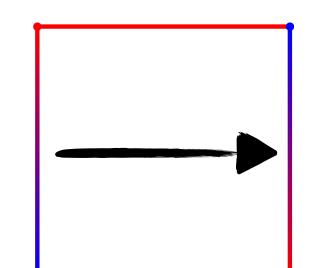


Proof Sketch - Compare Two Posted Price Mechanisms:

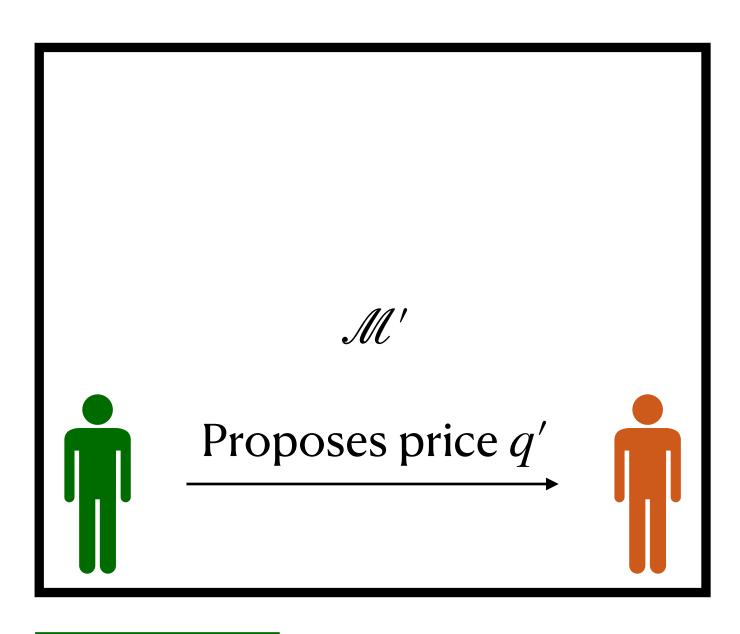




Interdependent Mechanism

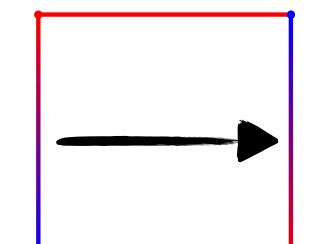


Proof Sketch - Compare Two Posted Price Mechanisms:

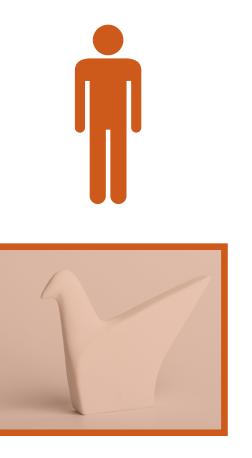


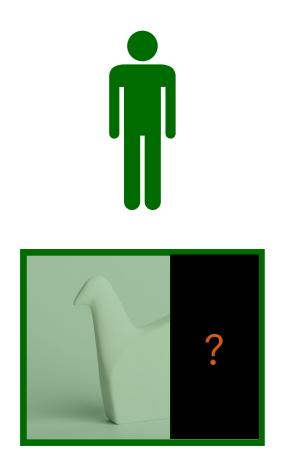
Investigating M':

- The buyer proposes the price q' so \mathcal{M}' satisfies **BIC** and **interim IR** (for the buyer).
- The seller is fully informed and responds to the proposed price optimally (so seller BIC and interim IR are also guaranteed).
- The **proposed price** q' can only be **higher** than price q (the price posted by the independent values mechanism \mathcal{M}).
- This implies the Welfare of \mathcal{M}' is at **least as large** as the Welfare of \mathcal{M} .



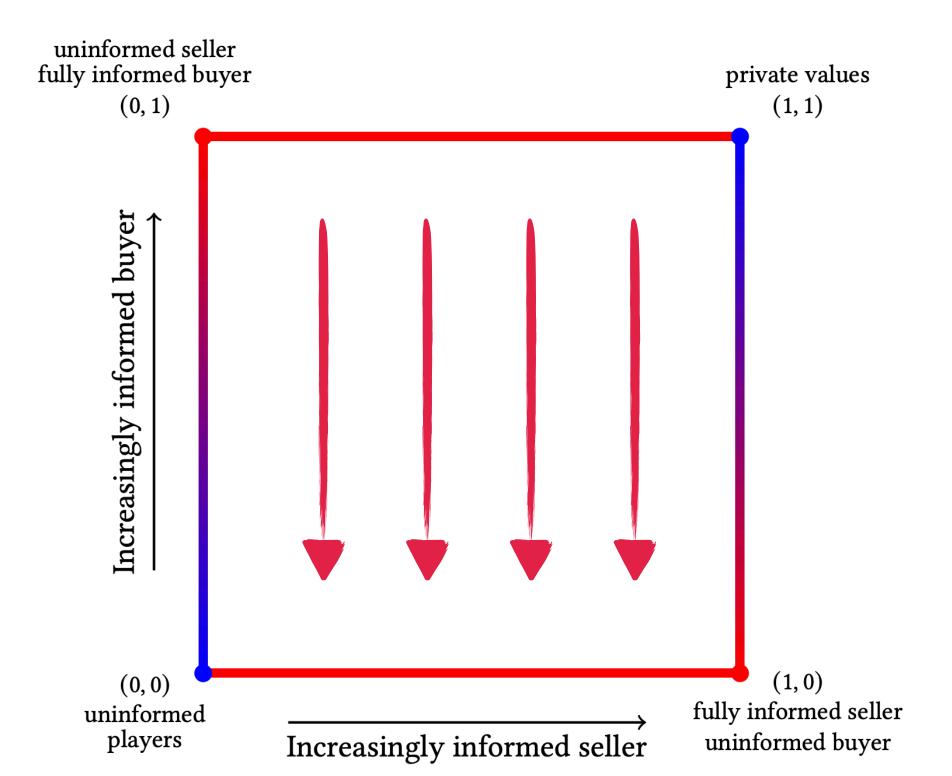
(Formal) Theorem 2: For every $\beta \in (0,1)$, there exists an information structure where the seller is fully informed and the buyer is β -informed, and **no** BIC and interim IR **mechanism can provide an approximation ratio** better than $\frac{2}{3\beta}$.





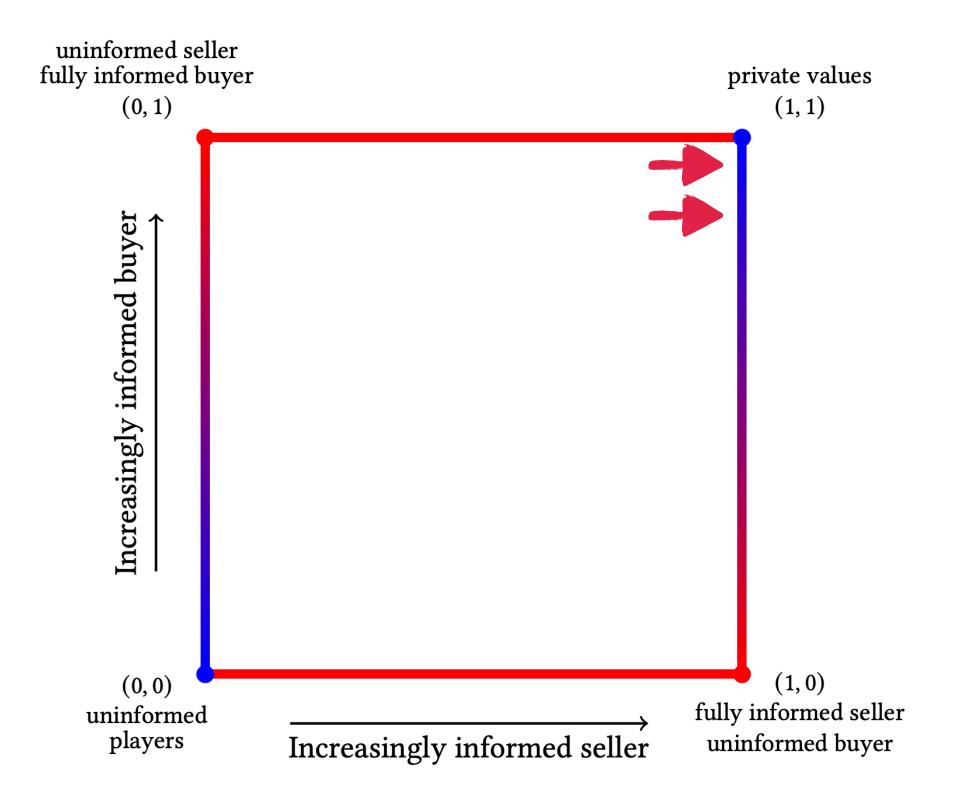
Interior of the square, overview of results

(Formal) Proposition 7: For every $\alpha > 0$ and $\beta < 1$, there exists an (α, β) -information structure where no BIC and interim IR mechanism can provide an approximation ratio better than $\frac{1}{2\beta}$.



Interior of the square, overview of results

(Formal) Proposition 8: For every $\alpha \in (0.9,1)$ and $\beta \in [1-(1-\alpha)^3,1)$, there exists an (α,β) -information structure where no BIC and interim IR mechanism can provide an approximation ratio better than $\frac{0.15}{1-\alpha}$.



Families of Information Structures - Polynomials

- Assume that the valuations of the buyer and the seller are **polynomials** of the signals, of **maximum degree** *k*:

$$v_s(b, s) = \sum_{i=1}^k c_i \cdot s^i + \sum_{i=1}^k d_i \cdot b^i + c_s$$

and

$$v_b(b, s) = \sum_{i=1}^k a_i \cdot b^i + \sum_{i=1}^k b_i \cdot s^i + c_b$$
.

The signals b, s are independently drawn from U[0,1].

Polynomials - Results

(Formal) Theorem 9: Suppose that v_b , v_s are polynomials of maximum degree k, and that the signals are independently drawn from a uniform distribution over [0,1]. Then, there **exists** a BIC and interim IR **mechanism that guarantees an approximation** ratio of $O(k^2)$. In particular, when v_b , v_s are linear functions, the approximation ratio is constant.

(Formal) Theorem 9: For every $k \in \mathbb{N}$, there exist polynomials v_b, v_s of degree k such that no BIC and interim IR mechanism can achieve an approximation ratio better than k.

Polynomials - Approximate mechanism

Mechanism M:

1. If $\mathbb{E}[v_s] \ge \frac{\mathbb{E}[v_b]}{(k+1)^2}$: Do not trade the item.

2. If
$$\mathbb{E}[v_s] < \frac{\mathbb{E}[v_b]}{(k+1)^2}$$
: Post a price of $q = \frac{\mathbb{E}[v_b]}{k+1}$ (the seller always agrees, the buyer might

always agree, or might sometimes agree).

Future Directions

- 1. Tightly characterize what is possible in the interior of the square.
- 2. Consider a different definition of informedness in information structures.

3. Investigate what is possible for the GFT objective.

- 4. Study other families of information structures.
- 5. Move beyond bilateral trade to two-sided markets (multiple buyers and/or sellers).

Summary

- Introduced the field of mechanism design and the problem of bilateral trade.
- Discussed value assumptions in mechanism design.
- Provided mechanisms and impossibilities for (α,β) -information structures.
- Got a little bit confused.

Thank you!

